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It is becoming increasingly apparent that nitric oxide plays a multifunctional role in regulating
inflammatory processes in the body. Although nitric oxide and its oxidation products are cytotoxic
toward certain pathogens, they can also cause tissue injury and suppress proliferation. Cytokines
and growth factors released at sites of inflammation or injury stimulate both immune and
nonimmune cells to produce nitric oxide. Nowhere in the body is this more detrimental than in
the bone marrow, for the continuous production of hematopoietic precursors is essential for
normal blood cell maturation. Our laboratories have discovered that, in response to inflammatory
mediators, bone marrow cells readily produce nitric oxide. Nitric oxide production is enhanced by
hematopoietic growth factors including interleukin-3, macrophage colony stimulating factor, and
granulocyte-macrophage colony-stimulating factor. When bone marrow cells produce nitric oxide,
hematopoiesis is impaired, an effect that is potentiated by colony-stimulating factors. Treatment
of mice with benzene, which suppresses bone marrow cell development, was found to markedly
enhance the ability of bone marrow cells to produce nitric oxide in response to inflammatory
mediators alone and in combination with hematopoietic growth factors. Taken together, these
data suggest that nitric oxide may be an important mediator of benzene-induced bone marrow

suppression. Environ Health Perspect 104(Suppl 6):1283-1287 (1996)

Key words: benzene, nitric oxide, bone marrow, GM-CSF, CSF-1, interleukin-3

Introduction
It is well recognized that growth factors
and cytokines regulate hematopoiesis in the
bone marrow. Granulocyte-macrophage
colony-stimulating factor (GM-CSF),
granulocyte CSF (G-CSF), macrophage
CSF (CSF-1), and interleukin-3 (IL-3 or
multi-CSF) are the most well characterized
of the growth factors. By acting directly on
progenitor cells, these cytokines have the
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capacity to induce bone marrow cell prolif-
eration and maturation. In several experi-
mental animal models, benzene or its
metabolites induce a marked decrease in
bone marrow cellularity as well as impaired
host resistance (1-6). Although the mecha-
nisms underlying the action of benzene are
not known, a number of studies have sug-
gested that stromal cells within the bone
marrow are a sensitive target (7). Several
reports have demonstrated that the function
of stromal cells, which consist predomi-
nantly of mature macrophages, are reduced
after exposure of mice to benzene or its
metabolites. Thus, after benzene exposure,
these cells are unable to support prolifera-
tion of stem cells or the development of
hematopoietic progenitors (8-11). In addi-
tion, in vitro exposure of stromal cells to
benzene metabolites such as hydroquinone,
benzoquinone, catechol, and benzenetriol
reduces their capacity to produce cytokines
and regulate hematopoiesis (11-15). In con-
trast to these results, our laboratories have
found that benzene treatment of mice leads
to activation and/or increased maturation
of bone marrow macrophages (2,16,17).

These cells increase in number and pro-
duce hydrogen peroxide, interleukin-1, and
tumor necrosis factor-a, each of which has
been implicated in tissue injury and/or
altered cellular proliferation (18). In the
present studies, these observations were
extended by examining the effects of ben-
zene and its metabolites on nitric oxide
production by bone marrow cells.

Nitric oxide is an important cytotoxic
effector molecule synthesized by activated
macrophages against intracellular patho-
gens (19). It is produced via the NADPH-
dependent enzyme nitric oxide synthase by
the oxidation of a guanidino nitrogen of
L-arginine (20). Once formed, nitric oxide
can complex with iron-sulfur or heme-
containing proteins in cells, inhibiting
and/or activating a variety of enzymes that
can lead to reduced DNA synthesis and
cytotoxicity (19,20). Nitric oxide also read-
ily reacts with active oxygen, in particular,
superoxide anion, resulting in highly toxic
peroxynitrite radicals (21). We have found
that benzene treatment of mice causes
increased production of nitric oxide by bone
marrow cells in response to inflammatory
mediators and colony-stimulating factors.
Moreover, nitric oxide production by bone
marrow cells is inversely correlated with cel-
lular proliferation. Cells from benzene-
treated mice exhibited increased sensitivity
to nitric oxide-mediated growth inhibition,
a finding consistent with the idea that nitric
oxide contributes to the reduced bone mar-
row cellularity and impaired hematopoiesis
observed after benzene exposure (7,22,23).

Materials and Methods
Benzene and its metabolites were obtained
from Fisher Scientific (Springfield, NJ).
NGi-monomethyl-L-arginine (L-NMMA)
was purchased from Chem-Biochem
Research, Inc. (Salt Lake City, UT) and
was greater than 99% pure. Murine rGM-
CSF, rIL-3, tumor necrosis factor-a
(TNF-a), and human rM-CSF and rIL-l1
were from Genzyme Corp. (Boston, MA).
Purified mouse recombinant interferon-y
(rIFN-y) was generously provided by
Sidney Pestka (UMDNJ-Robert Wood
Johnson Medical School). Lipopolysac-
charide ([LPS]; Escherichia coli serotype
0128:B112) and all other reagents were from
Sigma Chemical Co. (St. Louis, MO).
Reagents were diluted in medium and-
prepared fresh immediately before use.

Female Balb/c mice (20-25 g) were pur-
chased from Taconic Farms (Germantown,

Environmental Health Perspectives - Vol 104, Supplement 6 * December 1996 1 283



LASKIN ETAL.

NY). Animals were housed in microisolator
cages and received food and sterile water
ad libitum. Mice were injected ip with 800
mg/kg benzene (Fisher Scientific) in corn
oil, 100 mg/kg hydroquinone, 25 mg/kg
1 ,2,4-benzenetriol, 2 mg/kg p-benzo-
quinone, or corn oil control once/day for 3
days or twice/day for 2 days. These treat-
ment protocols were found to induce bone
marrow suppression (24-26). In some
experiments mice were also injected iv with
L-NMMA (1.25-10 mg/mouse) before
benzene treatment.

Eighteen hours after the last treatment
with benzene, benzene metabolites, or con-
trol, mice were euthanized, the lower leg
bones were removed, the femurs and tibias
flushed with 5 ml of ice-cold Hank's bal-
anced salt solution (HBSS), and the cell
suspensions washed once in ice-cold
HBSS. For determination of bone marrow
cellularity, contaminating red blood cells
were lysed using 0.75% ammonium
chloride in 20 mM Tris-HCl buffer, pH
7.2. For all other experiments, the bone
marrow cell suspension was layered over
lymphocyte separation medium (Organon
Teknika, Durham, NC) and centrifuged for
30 min at 85g, 20°C. This isolation proce-
dure removed erythrocytes and approxi-
mately 50% of the granulocytes from bone
marrow cell suspensions (17). The low-den-
sity fraction, which consisted of granulo-
cytes (35-40%), mononuclear phagocytes
(8-12%), lymphocytes (25-30%), and pre-
cursors (15-20%), as determined by anti-
body binding and flow cytometry (17), was
then washed three times with cold HBSS
and enumerated using a Coulter counter.
Viability was assessed by Trypan Blue exclu-
sion. Bone marrow cells from groups of four
mice were pooled and analyzed as a group.

Bone marrow cells were inoculated into
96-well dishes (0.5-1.0 x 106 cells/well) in
250 pi of phenol red-free Dulbecco's
modified Eagle's medium supplemented
with 10% heat-inactivated fetal bovine
serum (Biocell Laboratories, Carson, CA),
2 mM L-glutamine, penicillin (50 U/ml),
and streptomycin (50 pg/in1) with and with-
out various concentrations of growth factors
and/or cytokines. This culture medium
contains 84 mg/ml of L-arginine. Nitric
oxide, quantified by the accumulation of
nitrite in the culture medium, was mea-
sured by a microplate assay based on the
Griess reaction with sodium nitrite as the
standard (22,27).

Bone marrow cells were inoculated
into 96-well dishes (1 x 106 cells/well) in
the presence or absence of various stimuli.

After 19 hr of incubation, 3H-thymidine
(1 pCi/well, 2.0 Ci/mmol; NEN Research
Products, Wilmington, DE) was added.
Cells were harvested 5 hr later onto glass-
fiber filter paper using a PHD cell har-
vester, and counted for radioactivity.

Data were analyzed using the Student's
t-test. Results were considered statistically
significant at p< 0.05.

Results
Effects ofInflammatory Mediators
and Colony-stimulating Factors
on Nitric Oxide Production by
Bone Marrow Phagocytes
Both IFN-y and bacterial-derived LPS
readily stimulated nitric oxide production
by bone marrow cells for periods up to 72
hr (Figure 1) (22). A marked synergism
was observed with combinations of IFN-y
and LPS. In contrast, in the absence of stim-
ulation, bone marrow phagocytes produced
negligible amounts of nitric oxide. Nitric
oxide production by bone marrow cells in
response to LPS and IFN-y depended on
L-arginine in the culture medium and was
inhibited by L-NMMA and L-canavanine,
two L-arginine analogs that are potent
inhibitors of nitric oxide synthase (22).
The inhibitory effects of these analogs
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could be reversed by adding excess L-argi-
nine to the cultures (22). In previous studies
using Northern blot analysis and specific
cDNA probes, we showed that IFN-y and
LPS increased expression of an inducible
form (type II) of nitric oxide synthase in
bone marrow cells (3). Taken together,
these data demonstrate that nitric oxide pro-
duced by the bone marrow cells is formed
from L-arginine via nitric oxide synthase.
We next analyzed the effects of the

colony-stimulating factors IL-3, GM-CSF,
and M-CSF on nitric oxide production by
bone marrow cells (Figure 1) (3,22).
Although none of these cytokines alone
induced nitric oxide production by bone
marrow cells, a marked synergism was
observed when they were used in combina-
tion with LPS or IFN-y (Figure 1) (3,22).

Effects ofInducers ofNitric Oxide on
Proliferation ofBone Marrow Cells
In the bone marrow, GM-CSF, M-CSF,
and LPS stimulated bone marrow cell pro-
liferation, as measured by increases in cell
number (3,22) and 3H-thymidine incorpo-
ration (Figure 2). GM-CSF and M-CSF
were more effective in stimulating prolifer-
ation than was LPS (Figure 2) (3,22).
Treatment of the bone marrow cells with
combinations of either LPS or IFN-y and

T
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Figure 1. Effects of inflammatory mediators and colony-stimulating factors on nitric oxide production by bone
marrow. Bone marrow cells were incubated with 100 U/ml IFN-y, 1 pg/ml LPS, 100 U/ml IL-3, 200 U/ml GM-CSF,
or 20 U/ml M-CSF, alone or in combination as indicated. After 72 hr, supernatants were collected and assayed for
nitrite content. Each bar is the average ± SE of triplicate samples from one of three similar experiments.
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GM-CSF or M-CSF, which stimulate
nitric oxide production (Figure 1), resulted
in a marked inhibition of bone marrow cell
proliferation (Figure 2) (3,22). This inhi-
bition was reversed by L-NMMA. A similar
effect was observed in cells treated with
combinations ofCSF and IFN-y (3,22).

Effects ofTreatment ofMice
with Benzene or Benzene Metabolites
on Nitric Oxide Production by Bone
Marrow Phagocytes
In our next series of studies, we analyzed
the effects of benzene treatment of mice on
bone marrow cell production of nitric
oxide. As observed with cells from control
animals, in the absence of stimulation, bone
marrow cells from benzene-treated mice
produced negligible quantities of nitric
oxide. Treatment of these cells with LPS
resulted in a dose and time-dependent
increase in nitric oxide production (Figure 3)
(2,23). Bone marrow cells from mice
treated with benzene produced significantly
more nitric oxide in response to LPS than
did cells from control mice (Figure 3). We
also found that cells from benzene-treated
mice produced significantly more nitric
oxide in response to combinations of LPS
plus M-CSF or GM-CSF, as well as to
IFN-y alone and in combination with LPS
than did cells from control animals (3,23).
Taken together, these data indicate that
benzene treatment of mice primes bone
marrow cells to produce increased amounts
of nitric oxide in response to inflammatory
stimuli and growth factors. The fact that
this was observed with both GM-CSF and
M-CSF (3,23) suggests that the effects of
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Figure 2. Effects of LPS and GM-CSF on bone marrow
cell proliferation. Bone marrow cells were incubated
with 1 pg/ml LPS or 200 U/ml GM-CSF alone or in com-
bination with 1 mmol/liter L-NMMA as indicated. After
24 hr, tritiated thymidine uptake was measured as
described in "Materials and Methods." Each bar is the
average + SE of triplicate samples from one of three
similar experiments.
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We next examined the effects of treating
mice with various metabolites of benzene
on bone marrow cell nitric oxide produc-
tion. As observed with benzene, treatment
of mice with hydroquinone, p-benzo-
quinone, or 1,2,4-benzenetriol resulted in a
marked increase in the ability of bone mar-
row phagocytes to produce nitric oxide in
response to LPS and/or IFN-y (23). Cells
from hydroquinone or 1,2,4-benzenetriol
treated mice produced more nitric oxide
than cells from benzene or p-benzoquinone-
treated mice. In addition, cells from mice
treated with various benzene metabolites
were more responsive to combinations of
LPS and GM-CSF or M-CSF (23).

ults Effects of L-NMMA on Nitric Oxide
:ion Production by Bone Marrow Cells
,ure As described above, nitric oxide production
luc- by bone marrow cells is inversely correlated
ient with cellular proliferation. Our observation
iced that cells from mice treated with benzene

produce increased levels of nitric oxide in
response to various stimuli suggested the
possibility that L-NMMA might prevent
benzene-induced decreases in bone marrow
cellularity in mice. Surprisingly, although
administration of L-NMMA to mice had
no significant effect on bone marrow cellu-
larity, simultaneous treatment of mice with
benzene resulted in a dose-dependent
decrease in bone marrow cell number (3),
suggesting that L-NMMA potentiates ben-
zene-induced hematotoxicity. To further
characterize the effects of L-NMMA on
bone marrow cells, we analyzed nitric oxide
production. Unexpectedly, we found that
cells from mice treated with L-NMMA
either alone, or in combination with ben-
zene, produced greater amounts of nitric
oxide in response to LPS or LPS plus GM-
CSF than did cells from control mice
(Figure 3) (23). These data indicate that L-
NMMA, like benzene, primes bone mar-
row cells to respond to growth factors and
inflammatory mediators. Cells from mice
treated with benzene and L-NMMA also
produced more nitric oxide in response to

n6e+ LPS than did cells from animals treated
with either of these agents alone (Figure 3)
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Discussion
In the presence of inflammatory mediators
such as LPS and IFN-y, cells from the
bone marrow have the capacity to produce
nitric oxide. The colony-stimulating fac-
tors GM-CSF, M-CSF, and IL-3, although
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inactive alone, enhance nitric oxide produc-
tion induced by the inflammatory media-
tors. Interestingly, production of nitric
oxide by bone marrow cells was inversely
correlated with their proliferative capacity.
Thus, cells that produce the greatest
amounts of nitric oxide exhibit the lowest
proliferative capacity. In excessive amounts,
nitric oxide is cytotoxic (19,20,28-31). It
has the capacity to abstract electrons from
electron-rich substrates, including critical
enzymes containing heme and iron-sulfur-
containing proteins such as those involved
in energy metabolism and DNA replication
(19,20), and this may occur in bone mar-
row cells producing nitric oxide. We found
that treatment of mice with benzene or its
metabolites enhanced the responsiveness of
bone marrow cells to inducers of nitric
oxide. These data suggest that this free radi-
cal may play a role in regulating hemato-
poietic cell growth and maturation during
benzene-induced bone marrow suppression.

At the present time, the mechanisms by
which benzene and its metabolites enhance
nitric oxide production in the bone marrow
are unknown. In earlier studies we demon-
strated enhanced production of interleukin-
1 and TNF-a in bone marrow cells after
benzene treatment of mice (16). These
cytokines are potent activators of iNOS
(18,32), and it is possible that these or other
inflammatory cytokines act in an autocrine
or paracrine manner to regulate nitric
oxide production in bone marrow cells. In
this regard, endogenous interferon-f, but
not TNF-a, synergizes with suboptimal

concentrations of LPS to activate inducible
nitric oxide synthase (33). We have previ-
ously shown that pulmonary irritants upreg-
ulate expression of platelet-activating factor
receptors on pulmonary alveolar macro-
phages, which is associated with increased
responsiveness to this proinflammatory
cytokine (34). It is possible that benzene and
its metabolites upregulate expression of
receptors for inflammatory mediators on
bone marrow cells, thus increasing their sen-
sitivity to these mediators.

If increased production of nitric oxide
by bone marrow cells after benzene
exposure contributes to hematotoxicity,
then it might be expected that administra-
tion of the nitric oxide synthase inhibitor
L-NMMA would ameliorate the toxic effects
of this solvent. Unexpectedly, L-NMMA
potentiated benzene-induced hematotoxic-
ity (3). In addition, L-NMMA by itself
caused an overall decrease in bone marrow
cell proliferation. It also reduced the
increased sensitivity of bone marrow cells
from benzene-treated mice to the growth-
promoting effects of GM-CSF. Taken
together, these data indicate distinct mech-
anisms of action of L-NMMA and ben-
zene. At the present time, the mechanisms
underlying the toxic effects of L-NMMA
are not known. Although one site of action
is inhibition of nitric oxide synthase,
L-NMMA, an arginine analog, may also
interfere with other metabolic pathways
utilizing this amino acid. In this regard, in
many cell types, L-NMMA is known to
inhibit arginine transport into cells (35),

and limiting nutrient supply may lead to
toxicity. Another possibility is that
L-NMMA, like benzene, also functionally
activates phagocytes in the bone marrow.
Hematotoxicity could then result from an
increase in the production of reactive
mediators by these cells.

The precise role of nitric oxide in
benzene-induced bone marrow toxicity
remains to be elucidated. Nitric oxide has
been implicated in the toxicity of a number
of diverse xenobiotics including ozone, silica,
paraquat, endotoxin and acetaminophen
(18). With many of these agents, enhanced
production of reactive oxygen intermediates
in target cells has been reported (18).
Interestingly, benzene treatment of mice also
results in enhanced production of reactive
oxygen intermediates by bone marrow
phagocytes (17). Nitric oxide reacts rapidly
with superoxide anion, forming peroxyni-
trite. This reaction may effectively decrease
toxicity by reducing oxidant levels in the tis-
sue; however, it may also augment tissue
damage because peroxynitrite is a powerful
oxidizing agent (21). In the presence of
molecular oxygen, nitric oxide can also form
a variety of nitrogen oxide intermediates
that are potent N-nitrosating agents that can
react with primary and secondary amines to
form nitrosoamines (36). Formation of
these highly carcinogenic metabolites may
be responsible for the mutagenic activity of
nitric oxide (37,38) and could account for
the known leukemogenic activity of ben-
zene. Further studies are in progress to
explore these possibilities.
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